本文摘要

本文复现并分析了 OceanBase 频繁更新数据后读性能下降现象的原因,并给出了性能改善方式。

背景

测试在做 OceanBase 纯读性能压测的时候,发现对数据做过更新操作后,读性能会有较为明显的下降。具体复现步骤如下。

复现方式

环境预备

部署OB

使用 OBD 部署单节点 OB。

版本IP
OceanBase4.0.0.0 CE10.186.16.122

参数均为默认值,其中内存以及转储合并等和本次实验相关的重要参数值具体如下:

参数名含义默认值
memstore_limit_percentage设置租户使用 memstore 的内存占其总可用内存的百分比。50
freeze_trigger_percentage触发全局冻结的租户使用内存阈值。20
major_compact_trigger设置多少次小合并触发一次全局合并。0
minor_compact_trigger控制分层转储触发向下一层下压的阈值。当该层的 Mini SSTable 总数达到设定的阈值时,所有 SSTable 都会被下压到下一层,组成新的 Minor SSTable。2

创建 sysbench 租户

create resource unit sysbench_unit max_cpu 26, memory_size '21g';
create resource pool sysbench_pool unit = 'sysbench_unit', unit_num = 1, zone_list=('zone1');
create tenant sysbench_tenant resource_pool_list=('sysbench_pool'), charset=utf8mb4, zone_list=('zone1'), primary_zone=RANDOM set variables ob_compatibility_mode='mysql', ob_tcp_invited_nodes='%';

数据预备

创建 30 张 100 万行数据的表。

sysbench ./oltp_read_only.lua --mysql-host=10.186.16.122 --mysql-port=12881 --mysql-db=sysbenchdb --mysql-user="sysbench@sysbench_tenant"  --mysql-password=sysbench --tables=30 --table_size=1000000 --threads=256 --time=60 --report-interval=10 --db-driver=mysql --db-ps-mode=disable --skip-trx=on --mysql-ignore-errors=6002,6004,4012,2013,4016,1062 prepare

环境调优

手动触发大合并

ALTER SYSTEM MAJOR FREEZE TENANT=ALL;

# 查看合并进度
SELECT * FROM oceanbase.CDB_OB_ZONE_MAJOR_COMPACTION\G

数据更新前的纯读 QPS

sysbench ./oltp_read_only.lua --mysql-host=10.186.16.122 --mysql-port=12881 --mysql-db=sysbenchdb --mysql-user="sysbench@sysbench_tenant"  --mysql-password=sysbench --tables=30 --table_size=1000000 --threads=256 --time=60 --report-interval=10 --db-driver=mysql --db-ps-mode=disable --skip-trx=on --mysql-ignore-errors=6002,6004,4012,2013,4016,1062 run

read_only 的 QPS 表现如下:

第一次第二次第三次第四次第五次
344727.36325128.58353141.76330873.54340936.48

数据更新后的纯读 QPS

执行三次 write_only 脚本,其中包括了 update/delete/insert 操作,命令如下:

sysbench ./oltp_write_only.lua --mysql-host=10.186.16.122 --mysql-port=12881 --mysql-db=sysbenchdb --mysql-user="sysbench@sysbench_tenant"  --mysql-password=sysbench --tables=30 --table_size=1000000 --threads=256 --time=60 --report-interval=10 --db-driver=mysql --db-ps-mode=disable --skip-trx=on --mysql-ignore-errors=6002,6004,4012,2013,4016,1062 run

再执行 read_only 的 QPS 表现如下:

第一次第二次第三次第四次第五次
170718.07175209.29173451.38169685.38166640.62

数据做一次大合并后纯读 QPS

手动触发大合并,执行命令:

ALTER SYSTEM MAJOR FREEZE TENANT=ALL;

# 查看合并进度
SELECT * FROM oceanbase.CDB_OB_ZONE_MAJOR_COMPACTION\G

再次执行 read_only ,QPS 表现如下,可以看到读的 QPS 恢复至初始水平。

第一次第二次第三次第四次第五次
325864.95354866.82331337.10326113.78340183.18

现象总结

对比数据更新前后的纯读 QPS,发现在做过批量更新操作后,读性能下降 17W 左右,做一次大合并后性能又可以提升回来。

排查过程

手法 1:火焰图

火焰图差异对比

收集数据更新前后进行压测时的火焰图,对比的不同点集中在下面标注的蓝框中。

放大到方法里进一步查看,发现低 QPS 火焰图顶部多了几个 ‘平台’,指向同一个方法 oceanbase::blocksstable::ObMultiVersionMicroBlockRowScanner::inner_get_next_row

查看源码

火焰图中指向的方法,会进一步调用 ObMultiVersionMicroBlockRowScanner::inner_get_next_row_impl。后者的主要作用是借嵌套 while 循环进行多版本数据行的读取,并将符合条件的行合并融合(do_compact 中会调用 fuse_row),返回一个合并后的行(ret_row)作为最终结果,源码如下:

int ObMultiVersionMicroBlockRowScanner::inner_get_next_row_impl(const ObDatumRow *&ret_row)
{
  int ret = OB_SUCCESS;
  // TRUE:For the multi-version row of the current rowkey, when there is no row to be read in this micro_block
  bool final_result = false;
  // TRUE:For reverse scanning, if this micro_block has the last row of the previous rowkey
  bool found_first_row = false;
  bool have_uncommited_row = false;
  const ObDatumRow *multi_version_row = NULL;
  ret_row = NULL;

  while (OB_SUCC(ret)) {
    final_result = false;
    found_first_row = false;
    // 定位到当前要读取的位置
    if (OB_FAIL(locate_cursor_to_read(found_first_row))) {
      if (OB_UNLIKELY(OB_ITER_END != ret)) {
        LOG_WARN("failed to locate cursor to read", K(ret), K_(macro_id));
      }
    }
    LOG_DEBUG("locate cursor to read", K(ret), K(finish_scanning_cur_rowkey_),
              K(found_first_row), K(current_), K(reserved_pos_), K(last_), K_(macro_id));

    while (OB_SUCC(ret)) {
      multi_version_row = NULL;
      bool version_fit = false;
      // 读取下一行
      if (read_row_direct_flag_) {
        if (OB_FAIL(inner_get_next_row_directly(multi_version_row, version_fit, final_result))) {
          if (OB_UNLIKELY(OB_ITER_END != ret)) {
            LOG_WARN("failed to inner get next row directly", K(ret), K_(macro_id));
          }
        }
      } else if (OB_FAIL(inner_inner_get_next_row(multi_version_row, version_fit, final_result, have_uncommited_row))) {
        if (OB_UNLIKELY(OB_ITER_END != ret)) {
          LOG_WARN("failed to inner get next row", K(ret), K_(macro_id));
        }
      }
      if (OB_SUCC(ret)) {
        // 如果读取到的行版本不匹配,则不进行任何操作
        if (!version_fit) {
          // do nothing
        }
        // 如果匹配,则进行合并融合
        else if (OB_FAIL(do_compact(multi_version_row, row_, final_result))) {
          LOG_WARN("failed to do compact", K(ret));
        } else {
          // 记录物理读取次数
          if (OB_NOT_NULL(context_)) {
            ++context_->table_store_stat_.physical_read_cnt_;
          }
          if (have_uncommited_row) {
            row_.set_have_uncommited_row();
          }
        }
      }
      LOG_DEBUG("do compact", K(ret), K(current_), K(version_fit), K(final_result), K(finish_scanning_cur_rowkey_),
                "cur_row", is_row_empty(row_) ? "empty" : to_cstring(row_),
                "multi_version_row", to_cstring(multi_version_row), K_(macro_id));
      // 该行多版本如果在当前微块已经全部读取完毕,就将当前微块的行缓存并跳出内层循环
      if ((OB_SUCC(ret) && final_result) || OB_ITER_END == ret) {
        ret = OB_SUCCESS;
        if (OB_FAIL(cache_cur_micro_row(found_first_row, final_result))) {
          LOG_WARN("failed to cache cur micro row", K(ret), K_(macro_id));
        }
        LOG_DEBUG("cache cur micro row", K(ret), K(finish_scanning_cur_rowkey_),
                  "cur_row", is_row_empty(row_) ? "empty" : to_cstring(row_),
                  "prev_row", is_row_empty(prev_micro_row_) ? "empty" : to_cstring(prev_micro_row_),
                  K_(macro_id));
        break;
      }
    }
    // 结束扫描,将最终结果放到ret_row,跳出外层循环。
    if (OB_SUCC(ret) && finish_scanning_cur_rowkey_) {
      if (!is_row_empty(prev_micro_row_)) {
        ret_row = &prev_micro_row_;
      } else if (!is_row_empty(row_)) {
        ret_row = &row_;
      }
      // If row is NULL, means no multi_version row of current rowkey in [base_version, snapshot_version) range
      if (NULL != ret_row) {
        (const_cast<ObDatumRow *>(ret_row))->mvcc_row_flag_.set_uncommitted_row(false);
        const_cast<ObDatumRow *>(ret_row)->trans_id_.reset();
        break;
      }
    }
  }
  if (OB_NOT_NULL(ret_row)) {
    if (!ret_row->is_valid()) {
      LOG_ERROR("row is invalid", KPC(ret_row));
    } else {
      LOG_DEBUG("row is valid", KPC(ret_row));
      if (OB_NOT_NULL(context_)) {
        ++context_->table_store_stat_.logical_read_cnt_;
      }
    }
  }
  return ret;
}

分析

从火焰图来看,QPS 降低,消耗集中在对多版本数据行的处理上,也就是一行数据的频繁更新操作对应到存储引擎里是多条记录,查询的 SQL 在内部处理时,实际可能需要扫描的行数量可能远大于本身的行数。

手法 2:分析 SQL 执行过程

通过 GV$OB_SQL_AUDIT 审计表,可以查看每次请求客户端来源、执行服务器信息、执行状态信息、等待事件以及执行各阶段耗时等。

GV$OB_SQL_AUDIT 用法参考:https://www.oceanbase.com/docs/common-oceanbase-database-cn-10000000001699453

对比性能下降前后相同 SQL 的执行信息

由于本文场景没有实际的慢sql,这里选择在 GV$OB_SQL_AUDIT 中,根据 SQL 执行耗时(elapsed_time)筛出 TOP10,取一条进行排查:SELECT c FROM sbtest% WHERE id BETWEEN ? AND ? ORDER BY c

执行更新操作前(也就是高 QPS 时):

MySQL [oceanbase]> select TRACE_ID,TENANT_NAME,USER_NAME,DB_NAME,QUERY_SQL,RETURN_ROWS,IS_HIT_PLAN,ELAPSED_TIME,EXECUTE_TIME,MEMSTORE_READ_ROW_COUNT,SSSTORE_READ_ROW_COUNT,DATA_BLOCK_READ_CNT,DATA_BLOCK_CACHE_HIT,INDEX_BLOCK_READ_CNT,INDEX_BLOCK_CACHE_HIT from GV$OB_SQL_AUDIT where TRACE_ID='YB42AC110005-0005F9ADDCDF0240-0-0' \G
*************************** 1. row ***************************
               TRACE_ID: YB42AC110005-0005F9ADDCDF0240-0-0
            TENANT_NAME: sysbench_tenant
              USER_NAME: sysbench
                DB_NAME: sysbenchdb
              QUERY_SQL: SELECT c FROM sbtest20 WHERE id BETWEEN 498915 AND 499014 ORDER BY c
                PLAN_ID: 10776
            RETURN_ROWS: 100
            IS_HIT_PLAN: 1
           ELAPSED_TIME: 16037
           EXECUTE_TIME: 15764
MEMSTORE_READ_ROW_COUNT: 0
 SSSTORE_READ_ROW_COUNT: 100
    DATA_BLOCK_READ_CNT: 2
   DATA_BLOCK_CACHE_HIT: 2
   INDEX_BLOCK_READ_CNT: 2
  INDEX_BLOCK_CACHE_HIT: 1
1 row in set (0.255 sec)

执行更新操作后(低 QPS 值时):

MySQL [oceanbase]> select TRACE_ID,TENANT_NAME,USER_NAME,DB_NAME,QUERY_SQL,RETURN_ROWS,IS_HIT_PLAN,ELAPSED_TIME,EXECUTE_TIME,MEMSTORE_READ_ROW_COUNT,SSSTORE_READ_ROW_COUNT,DATA_BLOCK_READ_CNT,DATA_BLOCK_CACHE_HIT,INDEX_BLOCK_READ_CNT,INDEX_BLOCK_CACHE_HIT from GV$OB_SQL_AUDIT where TRACE_ID='YB42AC110005-0005F9ADE2E77EC0-0-0' \G
*************************** 1. row ***************************
               TRACE_ID: YB42AC110005-0005F9ADE2E77EC0-0-0
            TENANT_NAME: sysbench_tenant
              USER_NAME: sysbench
                DB_NAME: sysbenchdb
              QUERY_SQL: SELECT c FROM sbtest7 WHERE id BETWEEN 501338 AND 501437 ORDER BY c
                PLAN_ID: 10848
            RETURN_ROWS: 100
            IS_HIT_PLAN: 1
           ELAPSED_TIME: 36960
           EXECUTE_TIME: 36828
MEMSTORE_READ_ROW_COUNT: 33
 SSSTORE_READ_ROW_COUNT: 200
    DATA_BLOCK_READ_CNT: 63
   DATA_BLOCK_CACHE_HIT: 63
   INDEX_BLOCK_READ_CNT: 6
  INDEX_BLOCK_CACHE_HIT: 4
1 row in set (0.351 sec)

分析

上面查询结果显示字段 IS_HIT_PLAN 的值为 1,说明 SQL 命中了执行计划缓存,没有走物理生成执行计划的路径。我们根据 PLAN_ID 进一步到 V$OB_PLAN_CACHE_PLAN_EXPLAIN 查看物理执行计划(数据更新前后执行计划相同,下面仅列出数据更新后的执行计划)。

注:访问 V$OB_PLAN_CACHE_PLAN_EXPLAIN,必须给定 tenant_idplan_id 的值,否则系统将返回空集。

MySQL [oceanbase]>  SELECT * FROM V$OB_PLAN_CACHE_PLAN_EXPLAIN WHERE tenant_id = 1002 AND plan_id=10848 \G
*************************** 1. row ***************************
   TENANT_ID: 1002
      SVR_IP: 172.17.0.5
    SVR_PORT: 2882
     PLAN_ID: 10848
  PLAN_DEPTH: 0
PLAN_LINE_ID: 0
    OPERATOR: PHY_SORT
        NAME: NULL
        ROWS: 100
        COST: 51
    PROPERTY: NULL
*************************** 2. row ***************************
   TENANT_ID: 1002
      SVR_IP: 172.17.0.5
    SVR_PORT: 2882
     PLAN_ID: 10848
  PLAN_DEPTH: 1
PLAN_LINE_ID: 1
    OPERATOR:  PHY_TABLE_SCAN
        NAME: sbtest20
        ROWS: 100
        COST: 6
    PROPERTY: table_rows:1000000, physical_range_rows:100, logical_range_rows:100, index_back_rows:0, output_rows:100, est_method:local_storage, avaiable_index_name[sbtest20], pruned_index_name[k_20], estimation info[table_id:500294, (table_type:12, version:-1--1--1, logical_rc:100, physical_rc:100)]
2 rows in set (0.001 sec)

V$OB_PLAN_CACHE_PLAN_EXPLAIN 查询结果看,执行计划涉及两个算子:范围扫描算子 PHY_TABLE_SCAN 和排序算子 PHY_SORT。根据范围扫描算子 PHY_TABLE_SCAN 中的 PROPERTY 信息,可以看出该算子使用的是主键索引,不涉及回表,行数为 100。综上来看,该 SQL 的执行计划正确且已是最优,没有调整的空间。

再对比两次性能压测下 GV$OB_SQL_AUDIT 表,当性能下降后,MEMSTORE_READ_ROW_COUNT(MemStore 中读的行数)和 SSSTORE_READ_ROW_COUNT (SSSTORE 中读的行数)加起来读的总行数为 233,是实际返回行数的两倍多。符合上面观察到的火焰图上的问题,即实际读的行数大于本身的行数,该处消耗了系统更多的资源,导致性能下降。

结论

OceanBase 数据库的存储引擎基于 LSM-Tree 架构,以基线加增量的方式进行存储,当在一个表中进行大量的插入、删除、更新操作后,查询每一行数据的时候需要根据版本从新到旧遍历所有的 MemTable 以及 SSTable,将每个 Table 中对应主键的数据熔合在一起返回,此时表现出来的就是查询性能明显下降,即读放大。

性能改善方式

对于已经运行在线上的 buffer 表问题,官方文档中给出的应急处理方案如下:

  1. 对于存在可用索引,但 OB 优化器计划生成为全表扫描的场景。需要进行执行计划 binding 来固定计划。
  2. 如果 SQL 查询的主要过滤字段无可用索引,此时推荐在线创建可用索引并绑定该计划。
  3. 如果业务场景暂时无法创建索引,或者执行的 SQL 多为范围扫描,此时可根据业务场景需要决定是否手动触发合并,将删除或更新的数据版本进行清理,降低全表扫描的数据量,提升速度。

另外,从 2.2.7 版本开始,OceanBase 引入了 buffer minor merge 设计,实现对 Queuing 表的特殊转储机制,彻底解决无效扫描问题,通过将表的模式设置为 queuing 来开启。对于设计阶段已经明确的 Queuing 表场景,推荐开启该特性作为长期解决方案。

ALTER TABLE table_name TABLE_MODE = 'queuing';

但是社区版 4.0.0.0 的发布记录中看到,不再支持 Queuing 表。后查询社区有解释:OB 在 4.x 版本(预计 4.1 完成)采用自适应的方式支持 Queuing 表的这种场景,不需要再人为指定,也就是 Release Note 中提到的不再支持 Queuing 表。

参考资料

  1. 《Queuing 表查询缓慢问题》
  2. 《大批量数据处理后访问慢问题处理》
  3. 《OceanBase Queuing 表(buffer 表)处理最佳实践》
  4. 《ob4.0 确定不支持 Queuing 表了吗?》

本文关键字:#OceanBase# #火焰图# #性能调优#

分类: 故障分析